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Abstract

The laminar mixed convection ¯ow and heat transfer in a Chemical Vapor Deposition reactor are studied through
numerical simulation. It is found that the non-linear interaction between forced and free convection may lead to the
existence of multiple stable ¯ows. Arclength continuation techniques, implemented within the framework of the

®nite volume discretisation, have been applied to determine the causes for this multiplicity. It is shown that the
relevant dimensionless groups are Gr/Re and Re� Pr: When both these groups are su�ciently large, multiple stable
¯ows may exist. 7 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The IC industry shows an increasing interest in the

use of so-called cold-wall single-wafer chemical vapor

deposition (CVD) reactors for the purpose of deposit-

ing thin ®lms on silicon wafers [1,2]. Generally, these

reactors are based on the concept of a stagnation ¯ow,

in which a cold reactive gas mixture impinges perpen-

dicularly onto the heated wafer, on which, as a result,

a thin ®lm is deposited. In principle, the gas ¯ow may

be `tuned' precisely in such a way that uniform depo-

sition and e�cient removal of reaction products are

obtained [3±5]. For this purpose, computational ¯uid

dynamics (CFD) has become a widely used tool in

CVD reactor design [6±9].

Single-wafer CVD reactors (see Fig. 1) typically run

at operating pressures of 100±10,000 Pa. The reactor
walls are cooled to room temperature, whereas the sus-
ceptor is heated to temperatures of 500±1000 K. The

reactive gases are diluted in a carrier gas, typically H2,
He or N2. The gas ¯ow is characterized by a low Rey-
nolds number �Re � 1±100), whereas the Grashof

number can be relatively high, i.e. up to 104±105. The
resulting ¯ow pattern is mixed-convection, as the
forced convection, owing to inlet ¯ow, and the free

convection, due to temperature di�erences, are about
equally strong. The non-linear interaction between
forced and free convection may give rise to all sorts of
complex ¯ow phenomena, which highly depend on the

shape of the geometry [10±13]. In the particular ge-
ometry studied in this paper (see Fig. 1), this inter-
action may lead to the existence of multiple stable

¯ows, i.e., two or more stable steady ¯ow solutions
obeying unique boundary and operating conditions
[14±18].

In the commercial operation of a CVD reactor,
the existence of multiple stable ¯ows is an
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unwanted phenomenon, because it leads to unpre-

dictable process performance. With the more stan-

dard CFD tools that are generally used to design

CVD reactor geometries, it is di�cult to determine

whether a simulated ¯ow ®eld at certain operating

conditions is unique. As yet, uniqueness of a sol-

ution cannot be proven for a general ¯ow problem.

In non-linear dynamics, however, continuation tech-

niques have been developed that allow analysis of

the phenomena such as the existence of multiple

stable solutions [19]. In these methods, a path of

equilibrium solutions of the ¯ow is determined by

changing one of the intrinsic parameters of the sys-

tem incrementally. Yamaguchi and co-workers [20]

were the ®rst to apply these techniques in free-con-

vection ¯ow problems. Fotiadis and co-workers [16]

were the ®rst to exploit these techniques for study-

ing multiple stable ¯ows in a CVD reactor. The lat-

ter showed that the exchange of stability and the

resulting existence of multiple stable ¯ows in CVD

reactors is caused by turning or limit point instabil-

ities, and they discussed the e�ect of the di�erent

operating parameters on these instabilities. Both

authors used the framework of a ®nite element

method.

In this paper, the non-linear terms that actually

cause these types of instabilities in single-wafer CVD

reactors are isolated. This allows for the determination

of the combinations of dimensionless groups that are

characteristic of this phenomenon. Opposed to [16,20],

the framework of the ®nite volume (FV) method is

used in the present work. Therefore, several aspects of

Nomenclature

A general matrix
b vector
cp speci®c heat of gas (m2/s2/K)

ez unit vector in z-direction
g acceleration due to gravity (m/s2)
Ga Gay±Lussac number �Twafer ÿ Twall�=Tref

Gr Grashof number -
gr2refL

3�Twafer ÿ Twall�=�m2refTref�
I unity tensor

L lower LU-decomposition matrix
L radius vertical in¯ow pipe (m)
M precondition matrix
Nr, Nz number of grid cells in r- and z-direction

N(�) constraint equation in arclength continu-
ation

n normal

Nu Nusselt number, de®ned in Eq. (40)
P set of non-linear di�erential-algebraic

equations

P pressure (kg/m/s2)
p parameter
p parameter vector

Px Jacobian of P
Pr Prandtl number mrefcp, ref=lref

R set of non-linear di�erential-algebraic
equations

Ru Jacobian of R

r radial coordinate (m)
Ra Rayleigh number Gr � Pr
Re Reynolds number rrefVL=mref

s parameter of solution
T temperature (K)
t time (s)

U upper LU-decomposition matrix
Çu time derivative of u
u solution vector
V average axial gas velocity in¯ow pipe (m/s)

v velocity vector (m/s)
x solution vector
z axial coordinate (m)

E threshold in ILU�E�
l thermal conductivity (kg m/s3/K)
m dynamic viscosity (kg/m/s)

F̂ non-dimensionalized value of a variable F
r density (kg/m3)
t stress tensor (kg/m/s2)

$ transposed of a vector

Fig. 1. Schematic of the studied cold-wall single-wafer CVD

reactor.
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the implementation of continuation and arclength tech-
niques within this framework are discussed.

The geometry studied is an axi-symmetric vertical
stagnation ¯ow CVD reactor (see Fig. 1). The cold
gases are introduced radially into a large, vertical injec-

tion tube, which is positioned perpendicularly above
the horizontal susceptor surface, and leave the reactor
through the annular outlet. The walls of the reactor

chamber are kept at room temperature.

2. Model equations

The focus of this paper is on the mixed-convection
gas ¯ow and heat transfer in the reactor. Chemistry
and species di�usion phenomena are not taken into

account. When the reactants are present in high con-
centrations and have a molar mass that is very di�er-
ent from that of the carrier gas, concentration

di�erences may lead to solutal convection [12]. Thus,
the present analysis is limited to relatively dilute gas
mixtures or mixtures of gases with similar molar mass.

The gas ¯ow and heat transfer in the reactor are
described by the equations of mass, momentum and
energy conservation. The ¯ow is assumed to be axi-
symmetric. Full 3D simulations [21] proved that this is

a valid assumption for the operating conditions studied
in this paper. The operating ¯uid is assumed to behave
as an ideal gas.

Within the above constraints, the non-dimensional
equations for mass, momentum, and energy conserva-
tion describing the ¯ow in the reactor read [22]

Continuity:
@ r̂
@ t̂
� r̂ � ÿr̂Ãv� � 0 �1�

Momentum:

@
ÿ
r̂Ãv
�

@ t̂
� r̂ � ÿr̂ÃvÃv

�
� 1

Re
r̂ �

�
m̂

�
r̂ Ãv�

ÿ
r̂ Ãv
�y�ÿ 2

3
m̂
ÿ
r̂ � Ãv

�
� I
�

ÿ r̂P̂ÿ Gr

Re 2

0BB@ T̂ÿ 1

2�
T̂ÿ 1

2

�
Ga� 1

1CCAez

�2�

Energy:

ĉp
@ r̂T̂
@ t̂
� ĉpr̂ �

ÿ
r̂ÃvT̂

�
� 1

Re Pr
r̂ �

ÿ
l̂r̂T̂

� �3�

with the following boundary conditions:

reactor walls: Ãv � 0; T̂ � 0 �4�

susceptor surface: Ãv � 0; T̂ � 1 �5�

inflow: Ãv � Ãvin; T̂ � 0 �6�

outflow: P̂� @ t̂nn
@n
� 0;

@ T̂

@n
� 0 �7�

The di�erent quantities have been made dimensionless

as:

Ãv � v=V r̂ � r=rref �8�

T̂ � �Tÿ Twall �=�Twafer ÿ Twall � m̂ � m=mref �9�

p̂ � �pÿ rrefgz��=
ÿ
rrefV

2
�

l̂ � l=lref �10�

r̂ � Lr=V ĉp � cp=cp, ref �11�

t̂ � tL=V �12�

where rref , mref , lref and cp, ref are the values of r, m, l
and cp at the average gas temperature

Tref � 1
2 �Twafer � Twall�, L is the characteristic dimen-

sion, selected as the radius of the vertical in¯ow pipe,
and V is the characteristic velocity, selected as the

average axial gas velocity in this pipe.
The temperature dependence of the dimensionless

gas properties has been ®tted as:

Density: r̂ �
��

T̂ÿ 1
2

�
Ga� 1

�ÿ1
�13�

Thermal conductivity: l̂ �
��

T̂ÿ 1
2

�
Ga� 1

�0:8
�14�

Dynamic viscosity: m̂ �
��

T̂ÿ 1
2

�
Ga� 1

�0:7
�15�

Specific heat: ĉp �
��

T̂ÿ 1
2

�
Ga� 1

�0:1
�16�

which is a good approximation for most common
gases [23].
The set of equations (1)±(3), with material properties

given by Eqs. (13)±(16), and boundary conditions (4)±
(7) constitute a complete set of equations for the gas
¯ow in the reactor as a function of the dimensionless

numbers Re, Gr, Ga and Pr. The Prandtl number for
gases being 00.7, and the Gay±Lussac number varying
only slightly between 0.6 and 1.0 for practical operat-
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ing conditions, there are essentially two free par-
ameters determining the gas ¯ow: the Reynolds num-

ber via the inlet ¯ow, and the Grashof number (and
hence, the Rayleigh number) via the type of gas and
operating pressure.

3. Numerical method

3.1. Discretization and solution of the ¯ow equations

For their numerical solution, the above set of

coupled non-linear partial di�erential equations with
boundary conditions is discretized by means of a ®nite
volume space discretization. In order to avoid pro-

blems with the odd±even decoupling of the pressures, a
staggered grid is used. The convective ¯uxes are ap-
proximated by the second-order accurate central

scheme.
The discretized equations, along with the boundary

conditions, constitute a set of nonlinear di�erential-
algebraic equations of the form:

R�u, Çu, p� � 0, �17�
where u is the vector of the solution, containing the

velocities, temperatures and pressures in each node, Çu

the vector containing the time derivatives, and p is the
vector of the system parameters such as Re and Ra.
The steady-state solution is the solution of the system:

R�u, 0, p� � 0: �18�
where all time derivatives have been set to zero.

Usually, the system of equations (18) is solved either
by use of time integration [24] or by use of relaxation
methods [25]. In these methods, the momentum and
energy equations are decoupled from the continuity

equations using pressure-correction schemes. Advan-
tage of these methods is that the resulting sets of linear
equations have favorable spectral properties. There-

fore, they can be solved e�ciently. A disadvantage is
that a relatively large number of time steps or iter-
ations are required. This, however, can partly be over-

come by use of multi-grid acceleration [26,27].
A more important disadvantage, however, is that

only a subset of the solutions of Eq. (18) can be com-
puted, since these methods only converge to linearly

stable solutions. In the study of ¯ow instabilities and
transitions such as multiple stable ¯ows, the capability
to calculate all (stable and unstable) solutions is essen-

tial. Most solution methods that are capable of calcu-
lating all solutions of a set of non-linear equations are
based upon Newton's method [28]. It converges to any

solution of the discretized ¯ow equations, stable or un-
stable, provided that the initial estimate is su�ciently
close to this solution. For the FV discretized incom-

pressible ¯ow equations, these methods are rarely used
[29]. Relaxation and time-stepping methods are gener-

ally preferred, because they can be more easily im-
plemented, and because their demands on computing
time and memory are generally lower.

Newton's method for solving Eq. (18) can be written
as:

Ru

ÿ
u�n�, 0, p

��
u�n�1� ÿ u�n�

�
� ÿR

ÿ
u�n�, 0, p

�
�19�

where Ru is the global Jacobian of the system of
equations R:

Ru � @R

@u
�20�

This method converges quadratically, provided that
the initial guess u�0� is su�ciently close to the actual

solution. Several methods are available to enlarge the
radius of convergence [30]. In ¯ow problems, this is
not a serious restriction: for stable solutions, a few
large time steps can be taken to arrive at a good initial

guess. For unstable solutions, continuation techniques
as discussed below are available.
The Jacobian Ru has been obtained analytically, as

this method is computationally more e�cient, and is
less sensitive to numerical errors than numerical di�er-
entiation. In the momentum and energy equations,

however, the derivative of the ¯uid properties to tem-
perature has been taken into account in gravity terms
only. This may lead to linear convergence of the New-

ton solver when the terms ignored become important;
this is the topic of Section 3.3.

3.2. Linear solvers

In each iteration of the Newton solver, a linear sys-
tem of equations has to be solved:

Ax � b �21�
Where A is a sparse matrix with dimension four times
the grid size, since there is an equation for each vari-
able (i.e. two velocity components, temperature and

pressure) in each point. The spectral properties of A

are bad, especially as a result of the zeros at the diag-
onal of the discrete mass conservation equations.
In this paper, the Krylov-subspace method GMRES

(Generalized Minimum RESidual) has been applied
[31±34]. Krylov-methods are semi-iterative methods, as
in exact arithmetic the solution vector can be found

within a ®nite number of iterations, equal to the
dimension of the system. In practice, however, these
methods are only e�cient if the solution can be found

in a fraction of this number. The number of iterations
required by GMRES to ®nd the solution is determined
by the number of basis vectors needed to meet a cer-
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tain convergence criterion. A system with favorable
spectral properties, usually corresponding to a diagon-

ally dominant system, can be solved within a few iter-
ations. The spectral properties of the system resulting
from the discretized ¯ow equation, Eq. (18), however,

are bad. To overcome this problem, preconditioning is
applied. Rather than the system of Eq. 21, the system:

Mÿ1Ax �Mÿ1b �22�

is solved. Here M is the precondition matrix, or pre-
conditioner, and is selected in a way that M resembles
A and Mx � b can be solved cheaply. Many di�erent
preconditioners have been proposed, especially for

simple, comparatively well-posed systems [33±36]. A
general strategy applicable to more general systems is
not available.

Ideally, M equals A. Then, GMRES converges in a
single iteration. One option is to select M according
to:

M � LU � A �23�

This, however, is equivalent to directly solve the sys-
tem which is ine�cient. M only has to resemble A. A

good alternative therefore is to determine M such that:

M � LU1A �24�

This approach has been selected in this paper. A so-
called Incomplete LU (ILU) decomposition of A is
generated by determining the normal LU decompo-

sition of A with the restriction that only the elements
larger than some threshold E are taken into account.
This decomposition is called ILU�E� or ILUT.
In literature, di�erent preconditioners have been

suggested [37,38]. However, the preconditioners
suggested in literature are less e�cient in taking advan-
tage of the special properties of A for the currently

studied ¯ows. Since the Reynolds and Grashof num-
bers are relatively low, the convection terms are rather
small compared to the di�usion terms. The latter (and

thus the coe�cients in matrix A) are therefore virtually
independent of the ¯ow. A single ILU�E� decomposition
then su�ces for the whole Newton solver.

For the ILU�E� preconditioner, the ordering of the
equations is of importance. In this paper, the nodes
are numbered from left to right and line-wise from
below to the upper boundary. Then, for each node, all

variables are grouped together:

xy �ÿ
v1, 1r , v1, 1z , T 1, 1, P 1, 1, . . . ,vNr , Nz

r , vNr , Nz
z , T Nr, Nz , PNr, Nz

�
�25�

The advantage of this ordering method is that the

complete LU decomposition is a band matrix. The ®ll-
in of the ILU of a band matrix therefore is limited to

this band reducing the chance of memory problems.

3.3. Implementation and e�ciency

The above numerical method has been implemented
in FORTRAN. All ¯oats are double precision except

for those in the precondition matrix, which is relatively
large, and only an approximation.
An excellent check on the implementation is the con-

vergence behaviour of the Newton solver. This solver
must converge quadratically when the Gay±Lussac
number is small. Small errors in the discretization,
even for a single cell, may lead to linear convergence.

In Fig. 2, the convergence is depicted for Re = 3
and Gr = 1000, with Ga = 0 and 0.8, respectively.
The grid is Nr �Nz � 63� 105: The ®gure illustrates

that convergence for low Ga is indeed quadratic, but
that when Ga is increased, convergence becomes linear.
The reason is that the quadratic Newton solver then

e�ectively turns into a linear Picard solver. Still, very
low residuals can be attained in a limited number of
iterations, especially compared to time-stepping or

relaxation methods. Furthermore, the most important
goal for using this type of solvers, i.e. being able to
compute linearly unstable ¯ows, remains intact.
The most time-consuming step in this method is sol-

ving the linear system resulting from Eq. (19). This
step consists of once generating an ILU�E� and using
this decomposition in each of the GMRES steps.

There are several parameters that a�ect the e�ciency,

Fig. 2. Convergence of the coupled solvers �Re � 3,

Gr � 1000).
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viz. the threshold E, the restart m in GMRES, and the
convergence criterion. With the ILU�E� preconditioner
used, a restart is rarely necessary. GMRES then
usually converges either within 50 GMRES steps or
not at all. Hence, m is set to 60. For the convergence

criterion, a preconditioned residual of O�10ÿ6� is used.
This is usually su�ciently low to guarantee quadratic
convergence for the Newton solver. Unfortunately, the

convergence criterion can not be selected independently
of the threshold chosen in the preconditioner.
In the selection of the threshold, the most important

aspects are the memory required to store the ILU
matrix, the computing time required for the gener-
ation, and the computing time required in the
GMRES solver. In the computations presented below,

E is selected O�10ÿ6�: The resulting ®ll-in is relatively
high: for a Nr �Nz � 70� 42 grid with Re = 3 and
Gr = 1000, the ®ll-in is approximately 80% of the

band. Then the total computation time for a single 100
MHz HP8000 processor of a Convex S-class server is
90 s, showing that the ¯ows can be calculated com-

paratively e�ciently. For larger grids or in three
dimensions, however, demands on the memory may
become too large and/or break-down may occur.

In the simulations presented below, the grid is
selected Nr �Nz � 63� 105: For a representative set
of ¯ow conditions, doubling the grid to Nr �Nz �
126� 210 resulted in a less than 1% change in the

heat ¯ux everywhere on the susceptor surface.

4. Multiple solutions and turning-point instabilities

The multiple stable ¯ows that may occur in the geo-

metry studied, can be attributed to turning-point or
limit-point instabilities. In order to study these instabil-
ities, a numerical method is implemented that allows
computation of the solution branch, including the

turning points, as a function of one of the operating
parameters. This method can be separated into two
parts: (i) a continuation technique to follow a solution

branch as a function of an operating parameter such
as the Reynolds number; (ii) Keller's pseudo-arclength
procedure to track a solution through a turning point

[19]. These two steps are presented below, in a nota-
tion similar to Fotiadis [16].

4.1. Continuation in an operating parameter

For steady-state problems, Eq. (17) can be rewritten

as:

R�u�p�, p� � 0 �26�

Where the parameter set p contains the system par-
ameters such as geometry, Re and Gr. To determine

the e�ect of one parameter, say p, continuation tech-
niques are used to produce the initial estimate for the

next Newton iteration. To simplify the notation, rather
than the parameter set p, just one parameter, p, is
selected. This is the parameter that currently changes.

For steady-state problems, Eq. (26) then can be rewrit-
ten as:

R�u�p�, p� � 0 �27�

The ®rst-order Taylor expansion for the solution vec-
tor at a neighboring value p� Dp is given by:

u�p� Dp� � u�p� � @u�p�
@p

Dp �28�

The tangent vector, @u�p�=@p, is calculated from the

set of linear equations for the directional derivative of
Eq. (26) along the solution family at p:

Ru�u�p�, p�
@u�p�
@p
� ÿ@R�u�p�, p�

@p
�29�

Since for solving Eq. (29) the same Jacobian is used as

for solving Eq. (19), no new ILU�E� needs to be gener-
ated. First-order continuation requires only the vector
of parameter derivatives of the equations to be calcu-

lated, and the solution of system (29) is cheap since
the ILU�E� is available.
Solving Eq. (29) gives an initial estimate for u�p�

Dp�: The actual solution then can be calculated using
the Newton method presented in the previous section.

4.2. Tracking through turning points

If Ru is non-singular, a unique solution in the neigh-
borhood of p exists. The above method fails to con-
verge close to turning points, since @u�p�=@p will grow

unboundedly as p approaches the singular point. Fur-
thermore, the initial guess u�p� Dp� may be far from
the solution branch.

The arclength continuation method can be used to
overcome this problem. In this method, an additional
parameter, s, is introduced, the so-called independent

parameter of the solution arc. This new parameter
requires an additional equation and this equation is
selected in such a way that the solution branch has no
turning points in parameter s. Rather than tracking a

solution as a function of parameter p, the parameter s
is used. A positive change in s causes either a positive
or a negative change in p. The sign of the change in p

changes at a turning point. Computing the solution
branch as a function of s therefore allows tracking of
the whole solution branch, including the turning points

and the unstable branch.
The additional constraint that is added to the sol-

ution is denoted with N�u, p, s�: The problem Eq. (27)
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then changes to:

R�u, p� � 0

N�u, p, s� � 0 �30�

where s is the independent parameter of the solution
arc. N�u, p, s� is chosen such that s resembles the
`arclength' of the solution branch, resulting in:�
@u

@s

�y�
@u

@ s

�
�
�
@p

@s

��
@p

@s

�
� 1 �31�

The interpretation of this equation is illustrated in
Fig. 3. This ®gure also illustrates that with this selec-
tion for N�u, p, s�, no singularities can be expected in s

at a turning point.
The continuation technique as presented in the pre-

vious section is applied to the extended system of

equations, Eq. (30), which is de®ned as:

P�x, s� �
�

R�u, p�
N�u, p, s�

�
� 0 �32�

where x is the solution vector �x � �u�s�, p�s��y).
Suppose that at s the solution is x � �u�s�, p�s��y:

Similar to Eq. (28), a good initial guess for the sol-

ution at s � s� Ds then can be determined from:

u�s� Ds� � u�s� � Ds
@u�s�
@s

p�s� Ds� � p�s� � Ds
@p�s�
@ s

�33�

Because R�u�s�, p�s�� � 0 holds at s, we have�
k@u�s�
@s
k2
� 2

�
�
@p�s�
@s

� 2

� 1 �34�

where kuk2 is the L2-norm of u. Now, from Eq. (34),
and using the chain rule, expressions can be derived
for the partial derivatives @u�s�=@s and @p�s�=@ s in Eq.

(33):

@p�s�
@s
�2

�
1� k@u�s�

@p
k 22
�ÿ 1

2 �35�

and

@u�s�
@s
�
�
@u�s�
@p

��
@p�s�
@ s

�
�36�

The sign of Eq. (35) is such that:�
@u�s�
@s

�yÿ
u�s� ÿ u�sÿ Ds��� @p

@ s

ÿ
p�s� ÿ p�s

ÿ Ds��
> 0 �37�

while @u�s�=@p in Eqs. (35) and (36) is obtained by

solving the linear system (29).
With the initial guess from Eq. (33), Newton's

method is applied to Eq. (32) where the arclength con-

dition, Eq. (34) is linearized:

N�u, p, s� �
�
@u�s�
@s

�yÿ
u�s� ÿ u�s� Ds��

� @p
@s

ÿ
p�s� ÿ p�s� Ds��ÿ Ds

� 0 �38�

There is one important di�erence between tracking in s
and tracking in p. In contrast to the Jacobian Ru, the

Jacobian of P�x�s�, s�, given by:

Px�x�s�, s� �

26664
Ru

@R

@p

@N

@u

@N

@p

37775 �39�

remains non-singular on the solution branch, thus also
at turning points in p [19]. This property allows track-

ing of the whole solution branch.
The numerical method presented above has been im-

plemented using the Reynolds number for the par-

ameter p.

5. Results and discussion

5.1. Introduction

We have studied mixed-convection ¯ows in the reac-
tor depicted schematically in Fig. 1. The walls are
cooled to a uniform temperature Twall, the wafer isFig. 3. Selection of the equation for s.
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heated to a uniform temperature Twafer. In actual reac-
tor operation, small non-uniformities in wall tempera-
tures cannot be avoided. These are not, however,

expected to signi®cantly in¯uence the overall ¯ow pat-
tern. The in¯uence of various operating conditions
(type of carrier gas, pressure, ¯owrate and wafer tem-

perature, see Introduction) on the mixed convection
¯ow is studied through a variation of the characteristic
dimensionless numbers, i.e. Re, Gr and Ga.

It has been shown earlier, that multiple stable ¯ows
in the geometry under study exist for Re = 3, Gr =
1000, Ga = 0.8, and Pr = 0.7 [18]. These are realistic

operating conditions in CVD processes, e.g. for N2 as
the carrier gas corresponding to an operating pressure
of 1.3 kPa, an inlet ¯ow-rate of 3:7� 10ÿ5 kg/s,2 a
wall temperature of 300 K, and a wafer temperature of

700 K. Here, we use the numerical method presented
above to determine the characteristics of the di�erent
solutions at these conditions, and to show that the

observed multiplicity can be attributed to turning-
point instabilities.
In Fig. 4 the computed bifurcation diagram has

been plotted as function of the Reynolds number. As a
measure of the solution, the average Nusselt number
across the wafer surface is chosen:

Nu � 1

pr̂ 2wafer

XNr, wafer

i�0
p
�
r̂ 2
i� 1

2

ÿ r̂ 2
iÿ 1

2

�
l̂i

�
@ T̂

@ ẑ

�
i

�40�

Fig. 5 shows the three solutions that exist at Re = 3.
For these three solutions, Fig. 6 presents the local

Nusselt numbers as a function of the radial coordi-
nate.
Fig. 4 shows that the multiple stable ¯ows in this

geometry are the result of two turning-point instabil-
ities: one at Re = 4.15, and one at Re = 1.77. These
can be readily computed with the numerical method

presented above, provided that the step size Ds is
selected small near the turning points in order to
remain on the solution branch.

For low inlet Reynolds numbers, the ¯ow in the
reactor is dominated by free convection. This produces
a large buoyancy-induced recirculation cell, ®lling up
almost the whole reactor (see Fig. 5(A)). Increasing the

inlet Reynolds number from 0 to 4.15 only slightly
changes the average Nusselt number. This part of the
solution branch is called the lower stable solution

branch.
At Re = 4.15, the lower turning point is found and

the unstable solution branch begins. This means that,

if time-stepping with a su�ciently small time step were
performed from an initial guess at this unstable
branch, the solution would diverge from this branch to

one of the stable branches. Compared to the lower,
stable branch, the recirculation at the unstable branch
becomes smaller and is pushed away from the wafer
(see Fig. 5(B)). In this region, a reduction of the inlet

Reynolds number has little e�ect on the average heat
transfer.
The upper stable solution branch starts at Re =

1.77. On this branch, the forced convection dominates
the ¯ow above the wafer and the buoyancy-induced
recirculation is pushed further away from the wafer

(see Fig. 5(C)). This causes an increase in the heat
transfer near the center of the wafer (see Fig. 6). When
the Reynolds number is further increased, the recircu-
lation disappears completely.

The range of Reynolds numbers between 1.77 and
4.15 is called the multiplicity region, since three sol-
utions, two stable and one unstable, exist. In practical

reactor operation, small coincidences in the startup of
the reactor may determine which of the two stable
steady ¯ows is settled. For all operating conditions

with a multiplicity region as discussed further in this
paper, the main characteristics of ¯ow and heat trans-
fer on the three branches are similar to those plotted

in Fig. 5.
In the next section, the non-linear terms in the ¯ow

equations that cause this phenomenon, are isolated.

5.2. Sources of multiplicity

Multiple stable ¯ows are due to non-linear e�ects.
In the ¯ow equations, the non-linear terms that may
be the source of such an e�ect therefore are: (i) the

Fig. 4. Bifurcation diagram at Gr � 1000, Ga � 0:8 and

Pr � 0:7:

2 Corresponding to 1.85 slm (standard liters per minute).
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convection terms in the momentum equations, Eq. (2);

(ii) the convection terms in the energy equation, Eq.

(3); (iii) the non-linear gravity term in the momentum

equations, Eq. (2); (iv) the dependency of density on

temperature in the mass conservation equation, Eq.

(1); (v) the dependency of further material properties

on temperature. Contributions (iii)±(v) are linear in the

Boussinesq approximation, here corresponding to the

limit of Ga40: At conditions where this limit holds,

however, a multiplicity region is still found, although

Fig. 5. Three solutions at Re � 3, Gr � 1000, Ga � 0:8 and Pr � 0:7: (A) stable free-convection dominated solution, (B) unstable

solution, and (C) stable forced-convection dominated solution. The left side shows the dimensionless streamlines with intervals of

0.2, the right-hand side the dimensionless temperature from 0.1 (closest to the cold walls) to 0.9 (closest to the wafer surface), with

intervals of 0.1.
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at slightly higher Grashof number. The non-linearities
(iii)±(v), therefore, are not essential for the existence of

multiple stable ¯ows.
The e�ect of the convection terms in the momentum

equations (source (i)) is negligible at low Reynolds

numbers. In the Boussinesq approximation, the
momentum and energy equations then reduce to:

r̂ 2
Ãv� r̂ÿRe p̂�� Gr

Re

�
T̂ÿ 1

2

�
ez � 0 �41�

Re Prr̂ �
ÿ
v̂T̂
�
ÿ r̂ 2

T̂ � 0 �42�
Eqs. (41) and (42) show that at these low Reynolds
numbers, the dimensionless parameters uniquely de®n-

ing the ¯ow are Gr=Re and Re� Pr:
To study this limit, the solution branch has been

computed for two di�erent cases: in the ®rst case,

Re � O�1�, Gr � 1000 and Pr � 0:7: In the second
case, the Reynolds and Grashof numbers are scaled
down by a factor 1000 to Re � O�10ÿ3� and Gr � 1,

whereas Prandtl is increased by that same factor to
Pr � 700, thus keeping Gr=Re and Re� Pr constant.
In Fig. 7, the two resulting solution branches have
been compared. This ®gure shows that a drastic

decrease of Re causes only limited quantitative di�er-
ences. Apparently, the scaling of Eqs. (41) and (42),
based on the assumption that the convection terms in

the momentum equations are comparatively small,
even holds at Reynolds numbers as large as Re03:
More importantly, however, this ®gure shows that

multiplicities still occur at Reynolds numbers as low as

Re � O�10ÿ3�, proving that the convection terms in
the momentum equations are not the cause of the

existence of multiple stable ¯ows. The only remaining
non-linear term, and thus the cause of this phenom-
enon, is the convection term in the energy conservation

equation (source (ii)).
For a given geometry, the two important parameters

therefore are:

. Gr=Re, which can be interpreted as the strength of
momentum transport owing to buoyancy, compared
to molecular transport of momentum;

. Re� Pr, which is the ratio of convective and di�u-
sive transport of energy.

These determine whether or not the solution is in a

multiplicity region. The e�ect of these two parameters
has been plotted in Fig. 8.
Fig. 8 shows that when the buoyancy is su�ciently

strong compared to molecular transport of momen-
tum, and, when the convective transport of energy is
su�ciently high compared to the di�usive transport of
energy, a ¯ow solution is in a multiplicity region. In

this geometry, the minimum is approximately at
Gr=Re � 200 and Re� Pr � 1:5:
For ideal gases in incompressible ¯ows, where the

Boussinesq approximation does not hold, the convec-
tion terms in the energy equation are linear, as the
product of r and T̂ then is a constant. In that case it is

impossible that they cause multiple stable ¯ows. Then,
however, a similar term appears in the mass conserva-
tion equations: v � rT in turn becoming the source of

Fig. 7. E�ect of scaling down the Reynolds number by a fac-

tor 1000, keeping Gr=Re and Re� Pr constant at Ga � 0:8:
Fig. 6. Heat ¯ux of the three solutions at Re � 3, Gr � 1000,

Ga � 0:8 and Pr � 0:7:
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the non-linearity. For ideal gases, therefore, Re� Pr

and Gr=Re remain the two important parameters.

Above, the terms in the ¯ow equations that may

cause a multiplicity region have been isolated for

Ga40 and variable Prandtl number. The Prandtl

number of most common gases, however, is constant

and about 0.7, whereas in CVD reactors Ga00:6±1:
Therefore, below, the multiplicity phenomena in this

reactor are studied by varying Gr and Ga as a function

of Re.

5.3. The in¯uence of the Grashof number

For a ®xed geometry and a ®xed gas, the Grashof

number is mainly determined by the operating press-

ure. In practice, a large range of Grashof numbers can

be obtained with relatively small pressure variations,

because Gr increases with the square of the operating

pressure. As an example, with nitrogen as the carrier

gas, operating pressure of 130 and 1300 Pa correspond

to Grashof numbers of 10 and 1000, respectively. The

Grashof number is linearly contained in the gravity

term, one of the important terms for multiple solution

phenomena. Increasing Gr therefore can be expected

to increase the multiplicity region.

Fig. 9 shows the e�ect of Gr for Ga = 0.8 and Pr

= 0.7. The solution branches at Gr = 500, 1000, 1500

and 2000 are shown. Gr = 500 corresponds to the

point just outside the multiplicity region. As expected,

increasing Gr leads to increasing the range of Reynolds

numbers where there is more than one stable ¯ow.

5.4. The in¯uence of the Gay±Lussac number

The Gay±Lussac number, 2�Twafer ÿ Twall�=�Twall �
Twafer� is bounded between 0 and 2. Ga = 0 corre-
sponds to the Boussinesq approximation and Ga � 2

corresponds to a high wafer temperature compared to
the wall temperature. In practice, Gay±Lussac numbers
up to 01 �Twall � 300 K and Twafer � 900 K) can be

expected.
Provided that the e�ect of Ga on m, cp, l and the

convection term in the momentum equation are

ignored, the driving temperature di�erence is still im-
portant at two points in the ¯ow equations, viz. the
factor Ga� f�T̂ÿ �1=2��Ga� 1gÿ1 in the non-linear
term in the mass conservation equation (see Eq. (1))

and ��T̂ÿ 1=2�Ga� 1�ÿ1 in the gravity term in the
momentum equations, Eq. (2). These factors are non-
linear and can become large in low temperature areas

when Ga is large. It can thus be expected that the mul-
tiplicity region increases super-linearly with Ga.
In Fig. 10, the e�ect of Ga is shown for Gr � 1000

and Pr � 0:7: The solution branches at Ga = 0.1, 0.5,
0.8 and 1 are shown. As expected, the multiplicity
region increases with increasing Ga. Furthermore, the

Nusselt number slightly increases with Ga, as the trans-
port coe�cients such as l at the wafer surface
increase.

6. Concluding remarks

In the cold wall single-wafer CVD reactor studied,

multiple stable ¯ows may occur as a result of turning-
point instabilities.

Fig. 8. Solution branches as a function of the main parameters Gr=Re and Re� Pr at Ga � 0:8:
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An arclength continuation technique in combination

with a Newton/Picard solver has been implemented

within the framework of a FV method. This allows

e�cient tracking of the solution branches through

these turning-point instabilities. The most time- and

memory-consuming step is the linear solver in the

Newton iterations. GMRES in combination with an

ILU�E� preconditioner performs well for these low Rey-

nolds number ¯ows. Due to the large ®ll-in in the pre-

conditioner, however, memory demands may become

excessive for larger or 3D grids.

The turning points and the resulting multiple stable

¯ows are shown to be caused by a non-linear inter-

action between the convection term in the energy

equation and the gravity term in the momentum

equations. The important dimensionless parameters are

Gr=Re and Re� Pr: When both these parameters are

su�ciently large, multiple stable ¯ows may occur in

the geometry studied. In addition, a higher Ga leads to

a larger multiplicity region, although, for this phenom-

enon, increasing Gay±Lussac can be interpreted as

e�ectively increasing both Gr=Re and Re� Pr:
It must be stressed that geometry has an important

in¯uence on mixed convection phenomena such as

Fig. 9. E�ect of Gr on the multiplicity region at Ga � 0:8 and Pr � 0:7:

Fig. 10. E�ect of Ga on the multiplicity region at Gr � 1000 and Pr � 0:7:
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multiplicity. One ®xed geometry has been studied in
this paper, and the obtained critical values for Gr, Re,

Pr (or, more accurately Gr=Re and Re� Pr� and Ga
are speci®c for this studied geometry. Relatively small
alterations may suppress or favour multiplicity

phenomena, or may result in di�erent types of instabil-
ities such as a transition to 3D and/or transient ¯ows.
For large enough values of Gr=Re and Re� Pr, how-

ever, multiplicity phenomena are to be expected in
other reactor geometries as well.
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